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In this study, GAN technology was used to prepare small-town 

landscape generation and morphological analysis in the Qinba 

Mountain area. Important for the construction of a standardized 

dataset, a high-quality remote sensing image and building footprint 

data vector with adequate diversity and accuracy were utilized. It 

created exacting, via a GAN model, realistic small town 

morphologies and gave a sufficiently in-depth quantitative analysis 

in terms of several morphological indicators of area, perimeter, 

fractal dimension, longest axis length, circularity, mean distance 

from centroid to corners, of the convex hull perimeter, and of the 

aspect ratio. The results showed GAN-generated small town 

morphologies significantly varying in complexity and diversity. The 

hierarchical clustering analysis enables to uncover more intrinsic 

structures of the generated samples and classify the morphological 

characteristics of different types of towns. Therefore, this research is 

a verification of the effectiveness of GAN in generating urban 

morphology, but at the same time, it lays theoretical foundations with 

proof data for the optimization of GAN models. Therefore, the 

morphological analysis methods and indicator systems in this paper 

have a huge reference significance for urban planning and design. In 

short, this study demonstrated the tremendous potential of GAN 

technology in the generation and analysis of urban morphology and 

offered a scientific basis and technical support for small town 

planning in Qinba Mountain. 
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1. Introduction 
 

While small towns all over the world may have very different characteristics, unlike big cities 

they are not marked by their extent. Therefore, there is no specific definition and perception of small 

towns in the international context, with their definition mostly being determined by the population size 
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of the residents, economic activity to a certain degree, and even geography. The international 

perspective defines small towns in relation to their population size and the function of their economy 

and locale. However, the governing criteria differ drastically between countries. For instance, 

Germany considers the towns with a population between 5,000 and 20,000 as small towns(Wolff et 

al., 2021), whereas the definition according to the United States also refers to "Urban Clusters" creating 

a total range of 25,000 to 50,000(Urbanska and Levering, 1996). Measurement and classification of 

urban forms have been one of the important themes in the field of urban geography and urban planning 

in recent years. By numerically describing urban elements such as buildings, streets, and enclosed 

spaces, it is intended to reveal the patterns of urban organization and the potential relationships of 

forms. The measurement of urban form has something in common with the measurement of cellular 

and organismal morphology. From this point of view, cities can be considered as an analogy to 

organisms: streets and buildings play the role of cells and tissues, and the city itself is a "tissue 

structure". In this case, most of the concepts used in urban morphology, such as "urban fabric" and 

"urban cells," are essentially morphological concepts in biology(Kristjánsdóttir, 2019).  GANs have 

become a breakthrough tool for urban design and urban studies, offering innovative solutions to solve 

the dynamic and complex problems being thrown up by modern cities. With accelerating urbanization 

and increasing challenges to sustainability, resource management, and social equity, application of 

GANs in urban planning represents quite a big jump in analytical and design capabilities. Innovative 

models—like UrbanGenoGAN—integrate generative adversarial networks with genetic algorithms 

and geographic information systems to arrive at much-improved urban spatial planning. It generates a 

lot of different scenarios about towns, optimizes plans of cities, and gives full-scale spatial data 

analysis. Thus, based on this, UrbanGenoGAN is a game changer in city planning where more efficient, 

scalable, and sustainable urban development is possible(Cheng et al., 2023). Applications of GANs 

were also found in different urban studies, such as land use classification and simulation of urban 

morphology. For example, conditional GANs have already been used in the classification of urban 

areas by integrating data from multiple sources, demonstrative of its potential to deal with complex 

urban landscapes(Sirous et al., 2023). Recent studies illustrate practical implementations of GANs in 

urban planning. For instance, a conditional GAN-based approach was developed to enhance the 

rendering of hand-drawn park sketches into comprehensive color designs. This method significantly 

reduces the time required for iterative design processes and improves the overall efficiency of 

landscape design(Chen et al., 2024). Another study utilized GANs for site planning by integrating 

urban GIS data, demonstrating improved accuracy and detail in urban planning applications(Tian, 

2021). Urban morphology, the study of the form and structure of urban spaces, plays a crucial role in 

understanding the development, sustainability, and livability of cities. One of the significant 

advancements in urban morphology is the integration of Earth observation data with morphometric 

analysis(Zhao and Wu, 2024). Clustering analysis is a statistical method used to group similar objects 

into clusters, making it an effective tool for urban morphology studies. By grouping areas with similar 

morphological characteristics, researchers can identify patterns and trends that inform urban planning 

decisions. For instance, a study in Zurich used clustering analysis to identify distinct urban 

neighborhoods based on their morphological features, which helped in developing localized strategies 

for heat mitigation(Joshi et al., 2022). This study integrates Generative Adversarial Network (GAN) 

technology and urban morphology analysis methods to conduct an in-depth study of small towns in 

the Qinba Mountain area of southern Shaanxi. 

 

2. Methodology  
 

2.1 Research Framework 

The objective of this research is to generate the morphology of small towns in the Qinba Mountain 

region through generative adversarial networks and then make a detailed morphological analysis for 

the generated results. Geographical features and architectural characteristics in small towns of the 
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Qinba Mountain region are peculiar. Their morphology study will help gain insight into the spatial 

structure of towns in this region and provide a scientific basis for urban planning and building design. 

During this process, comprehensive links need to be shaped to form a research framework covering 

data collection, generation of morphology, and morphological analysis. Figure 1 illustrates the overall 

framework of the research.  

 
Fig. 1. Research Framework Diagram 

 

Information gathering is the backbone of research. In this paper, we used remote sensing satellite 

maps from Google and Gaode Maps to get the locations and building footprint data of small towns 

in the Qinba Mountain region. Using these map data, we could identify the small town boundaries 

and major building distribution. Location and footprint data were then vectorized to form a 

standardized dataset, ensuring diversity and accuracy of data. To generate realistic images, it is quite 

important to have high-quality diverse data. 

The next optimization used was the generation of morphology with the Generative Adversarial 

Network. GANs is comprised of a generator and a discriminator, the generator is responsible for 

transforming noise into realistic images, and the discriminator distinguishes between real and 

generated images. During the process of training, the discriminator is first trained using the real and 

generated images so that it can estimate the probability of the images being real, compute the loss 

function by backpropagation, and update parameters. In parallel, the generator produces fake images 

that enter the discriminator, which then calculates the probability of the images being fake. The 

results of real image discrimination accumulate into the total loss, which is used to update the 

parameters. To prevent favoring the architecture of the generator and discriminator, the discriminator 

is updated more often than the generator for each iteration. More explicitly, in each cycle, the 

parameters of the generator are fixed, and the discriminator is trained to improve its performance in 

discriminating real samples from generated samples. After that, the parameters which were involved 

in the training of the discriminator are frozen, and to update the generator, only its parameters are 

updated. Or in simple words, the generator will produce the fake images associated with a batch and 

have that batch streamed through the discriminator for the outputs. The loss calculation actually 

works in such a way that the generator itself, in turn, actively seeks to classify the fake images as 
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real, thus generating images that can fool the discriminator. Both the generator and the discriminator 

are implemented through the Adam optimizer with a learning rate of 2e-4 and the momentum 

parameter set at 0.5, 0.999. The optimization criterion for measuring the realism between generated 

images uses BCELoss. The batch size used during training is 256 for both cases, be it the input of 

random noise into the generator or real images into the discriminator. Output the weights of the 

generator and of the discriminator after each epoch of training to be further validated and trained, 

respectively. This comes to be trained over 500 epochs, it presents one of the highest in quality of 

generated images, with applications potent and wide in GANs for image generations. 

Morphological analysis was then carried out in detail after the generation of the images. 

Hierarchical cluster analysis classified the generated small town morphologies first. Morphological 

analysis used a few key indicators, which included the area, perimeter, fractal dimension, length of 

the longest axis, circularity, mean distance from centroid to corners, convex hull perimeter, and 

aspect ratio. These indicators present information about the geometric and spatial characteristics of 

the towns generated at different perspectives. For instance, the area and perimeter dimensions help 

in quantifying the sizes of a town's layout and boundary complexity. The fractal dimension reflects 

irregularity or complexity in forms, with the longest axis length giving information about the main 

directions and extents of urban forms. The circularity and aspect ratio measure compactness and 

elongation of town shapes respectively. While peripheral distribution with respect to the town's 

center is measured by the mean distance from the centroid to the corners, convexity is reflected in 

the perimeter of the convex hull boundary containing the town's layout. It provided the long and 

short axes of the small town morphologies during the morphological analysis using Grasshopper's 

C# component programming. The method in effect was rotating the bounding box for calculating 

the minimum-area bounding box. This approach works precisely to extract the long and short axes 

of town morphologies, thus providing reliable data for analyses in morphology. These parameters 

further provide details in quantitative descriptions which ensure that the generated town 

morphologies are comprehensively evaluated. 

 

2.2 Analysis and Generation of Small Town Morphology in the Qinba Mountain Region Using GANs 

2.2.1 Small Town Morphology Generation using GANs in the Qinba Mountains 

The Qinba Mountain region small towns morphology dataset offers a great deal of training 

material, and each image dimension is 96 by 96 pixels. Images capture a good number of boundaries 

and architectural features that stipulate the quality of small towns. In data collection, images were 

carefully selected and processed to ensure data diversity and accuracy. The high resolution and 

clarity of images in the dataset make it a perfect input sample for the training of the GAN. Figure 2 

illustrates examples from the morphology dataset of small towns. 

 
Fig. 2. Examples from the Morphology Dataset of Small Towns in the Qinba Mountain.  

 

In the training process of this Generative Adversarial Network, there has been a strict procedure 

with detailed parameter settings to guarantee that it generates high-quality images. It involves the 

training process of two major neural networks: one for generation and one for discrimination. A 
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generator is used to transform random noise into a realistic image, while a discriminator tells between 

the real and generated images. First, train the discriminator network using both real and generated 

images. So for each batch of the real image, it will estimate the probability of the images being real, 

compute backpropagation for the loss, and update parameters of. Simultaneously, let a generator 

network give fake images to the discriminator, which calculates again the probability that these were 

fake images. The results of real-image discrimination are combined, and the total loss is then computed 

for use in updating the parameters. To avoid bias in the structures of the generator versus the 

discriminator during each iteration, optimization of the discriminator happens more often than 

optimization of the generator. 

First, in each cycle, the generator's parameters are fixed, and the discriminator is trained to 

increase its chances of differentiating between a real and a fake image. This step is optimizing the 

model to probably attain more accuracy in detecting fake images. Then, it fixes the parameters of the 

discriminator and only updates the generator's parameters; that is, the generator produces a batch of 

fake images and forwards them through the discriminator. The generator should classify the fake 

images as real according to its loss calculation. In other words, this means that the generator generates 

images that are so real to hoodwink the discriminator with respect to not being able to tell any 

difference between them. For both the generator and discriminator, use Adam with a learning rate of 

2e-4 and momentum parameters fixed at (0.5, 0.999). Binary cross-entropy loss function BCELoss is 

also applied to measure the realness of generated images. 

The training process is performed using a batch size of 256 for the random noise input to the 

generator and for the real images fed into the discriminator. Weights for the generator and 

discriminator are saved after every training epoch for further validation and training. After the 

generator is trained for 500 epochs, the quality of the generated images will be very high, so GANs 

must have strong potentials for generating images and wide application prospects. The whole process 

of training conforms to the requirements of experimental design and scientific methodology in terms 

of seriousness. Detailed tuning and optimization for parameters demonstrate the effectiveness of the 

model, offering valuable insights and data support for related research in the future.The image 

presented in Figure 3 illustrates the variety of small towns generated by the GAN network. The 

generated images capture the essence and distinctive characteristics of small towns from the Qinba 

Mountain region, showcasing the model's ability to produce high-quality and realistic depictions that 

are virtually indistinguishable from actual photographs.  

 

 
Fig. 3. GAN-Generated Small Towns from Qinba Mountain Region 

 

2.2.2 Small Towns Morphology Measurement 
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The result of the GAN network in generating new small town morphologies is subject to a 

morphological analysis using several key indicators. These indicators are dimensions, including area 

and perimeter, and shape descriptors, such as fractal dimension, longest axis length, circularity, 

centroid-corners mean distance, hull's perimeter, and aspect ratio. Each of these indicators gives one 

perspective on the geometric/spatial characteristic of the generated towns. The table 1 lists these 

indicators as follows. 
Table 1 

Morphological Feature Indicators for Small 

Town Urban Form in the Southern Shaanxi 

Qinba Mountains district 
Index Category 

Area Dimension 

Perimeter Dimension 

Fractal Dimension Shape 

Longest Axis 

Length 

Shape 

Circularity Shape 

Centroid-corners 

mean distance 

Shape 

Hull's Perimeter Dimension 

Aspect Ratio Shape 

 

For example, area and perimeter dimensions are useful in quantifying total size and boundary 

complexity for the town layouts. The fractal dimension gives a sense of the irregularity or complexity 

of forms within the towns. Longest axis length provides information about the primary orientation or 

main direction and extent of the urban forms. Circularity and aspect ratio are measures of compactness 

and elongation, respectively, of town shapes. While the centroid-corners mean distance is a measure 

of the town's periphery distribution in relation to its center, the hull's perimeter reflects how far from 

convex the boundary containing the town's layout is. These detailed morphological indicators allow 

doing detailed evaluation about the generated town shapes, whether they fit the characteristic 

conditions in the real world for small towns in the Qinba Mountain region. 

The length of the longest axis is then equal to the length of the longest side of this rectangle. 

Dimensions and shapes are some of the indicators, but not the only ones, as other parameters 

connected with density and intensity give a full description of small town morphology. Circularities 

are among the metrics included in the calculation of the different indicators, calculated as Eq. 1 

shows. 

 Circularity =
4𝜋 ×  Area 

 Perimeter 2
 

The application of the fractal dimension concept to delineating small town boundaries is 

motivated by the experience in the measurement of organisms and cell morphometry. By treating 

geospatial data as a kind of analyzable morphological structure, we could borrow a similar way to 

investigate the spatial complexity and structural properties of small towns. Computation of the fractal 

dimension is an important tool in quantitative analyses related to small town forms, especially to 

understand the complexity of spatial urban arrangements. The fractal dimension describes the 

complexity of spaces or structures. Although there are several techniques for its calculation, the box-

counting algorithm emerges as the predominant method(Ai et al., 2014). The pivotal formula in this 

calculation is the computation of the fractal dimension, which is ascertained through the slope of the 

linear regression, as calculated according to the Eq. 2 shows bellow. 

 

𝐷 = 𝑙𝑖𝑚
𝜀→0

 
log (1/𝜀)

log 𝑁(𝜀)
 

(2) 
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This study adopted the rotating method of the bounding box and used C# component 

programming in Grasshopper in order to obtain the long and short axes of small town morphologies. 

By using this method, it is possible to obtain a bounding box that could describe more accurately and 

closely the morphology of small towns, hence extract the long and short axes of morphology quite 

accurately. The above code calculates the bounding box at every angle by rotating the plane at various 

angles, then finds the one with a minimum area. Here are the steps to implement it: First of all, define 

two variables `minArea` and `minBox` which store the minimum area and its corresponding bounding 

box. The `minArea` is initialized to a very large value to update to the actual minimum value in the 

subsequent calculation. All the possible rotation angles are iterated from 0 to 180 degrees using a `for` 

loop. At the beginning of each iteration, the current angle is converted from degrees into radians. The 

given plane is rotated around its Z-axis to ensure that the bounding box rotates in the two-dimensional 

plane. Then, the `curve.GetBoundingBox(rotatedPlane)` call calculates the bounding box of the curve 

on the rotated plane. Obtained BoundingBox is then converted to a Box for easier area calculation. 

The surface area of the current bounding box is calculated. The formula is the sum of areas of three 

faces—the X-Y, Y-Z, and Z-X faces—of the bounding box. This current bounding box area is checked 

versus the minimum recorded area; if smaller, update the minimum area along with its corresponding 

bounding box. After the loop, it outputs the bounding box with a minimum area, which is the bounding 

box that best fits and describes the morphology of small towns. In essence, this method relatively digs 

out the long axis and the short axis of morphology in small towns and obtains basic reliable data for 

the morphological analysis thereafter. The result of rotating to find the smallest area bounding box is 

shown in the figure 4 on the next page. 

 
Fig. 4. Bounding Box with the Smallest Area Found Through Rotation 

 

The figure 5 shows the scenario of how all the generated types are iteratively processed. For each 

type generated, the methodology of bounding box rotation is utilised to obtain the bounding box that 

can best and most accurately describe its morphological characteristics. By using this methodology, a 

number of morphological parameters could be estimated, such as the length of the longest axis, the 

length of the shortest axis, and the aspect ratio, among others describing shape. These parameters 

further provide a meticulous, quantitative description of the morphologies of the town, ensuring that 

the generated forms are fully assessed. For each generated form of the town, iterative rotation computes 

its bounding box and finds one with a minimum area. This bounding box is an important tool in 

extracting and analyzing the morphological features of the generated towns. 
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Fig. 5. Bounding Boxes for Morphological Characteristics of All Generated Types. 

 

3. Results  
 

In this paper, a GAN was applied to generate morphological samples for small towns in the Qinba 

Mountain area and analyzed in depth with regard to distribution characteristics using hierarchical 

clustering based on multidimensional feature parameters classifying systematically generated samples. 

The main parameters or features selected for clustering analysis were some of the morphological 

indicators: the length of the parameters, minimum bounding rectangle area, actual area, roundness, 

fractal dimension, maximum axis length, and minimum axes length. 

The dendrogram depicts the clustering result for this hierarchical relationship of dimensionality 

with various working parameters for different samples. Hierarchical clustering computes Euclidean 

distances between a single pair of samples and joins, iteratively, the most similar ones until finally 

getting a dendrogram. In the dendrogram, each node represents a specific sample or a group of samples 

where the lengths between link lines represent appropriate clustering distances between samples and 

groups. To distinguish different clustering categories, color-coding is used where samples in the same 

category exhibited a similarly high morphological feature parameter value for the same feature. 

Cluster results analysis shows the diversity and intrinsic structure of GAN-generated samples 

with regard to the morphological characteristics. The similarity shown by samples, within each 

category, concerning length, area, and roundness parameters provides data support and theoretical 

basis for further optimization of the GAN's generating parameters. The hierarchical clustering method 

is good at analyzing the internal structure of samples and understanding the multidimensional 

relationship of complex data. Results: GAN-generated morphological samples of small towns in the 

Qinba Mountain area, upon hierarchical clustering analysis, expose the sample diversity and feature 

distribution. This provides scientific guidance and technical support for further improving the GAN 

model to yield good quality and diverse results. That is to say, through clustering analysis regarding 

GAN-generated town morphology samples, this research deeply classified and analyzed the results 

generated by GAN; it is very instrumental and leads with far-reaching theoretical reference and values 

of practice in related fields of study. 
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Fig. 6. Hierarchical Clustering Analysis of GAN-Generated Morphological Samples of Small 

Towns in the Qinba Mountain Area. 

 

It clusters the towns into seven categories according to their morphologic characteristics and 

summarizes the typical morphological characteristics in each category. The high roundness and fractal 

dimension reveal smooth boundaries and regular shapes. On the other hand, towns in category 1 are 

compact and of regular shape. Mean length is relatively small, minimum rectangle area is small, so is 

total area. Also, the longest and shortest axis length are relatively short, which support their compact 

morphology, and such towns are usually amenable to high-density building layouts and compact 

community planning. The towns in category 2 have relatively more complex morphological 

characteristics with moderate lengths, larger minimum rectangular areas, and areas in general. Their 

low roundness and fractal dimension also show their irregular shapes. Accordingly, larger values of 

longest and shortest would suggest elongate and more variegated forms. These towns would possess 

multiple natural boundaries or would be very irregular in the distributions brought to them by street 

layouts. The powers of T3 are moderate. They are moderate between regular and irregular 

morphologies. Their lengths and areas are moderate, and likewise are the minimum rectangular areas. 

Characteristics of their shape—particularly their roundness and their fractal dimension are of a 

moderate character—suggesting, therefore, moderate shape regularity. Very similarly, a moderate 

length is also shown by the longest and shortest axis lengths. This would combine the regularity of 

main roads with irregularity within secondary streets. Towns of category 4 have the most regular and 

larger scale of morphological characteristics. They correspond to the longest length, the largest 

minimum rectangular area, and the biggest overall areas. High values of roundness and fractal 

dimension indicate very regular shapes. The axis length values are also the largest for both the longest 

and the shortest axes, thus confirming that their morphology is of large size and regular. These towns 

are suitable for large-scale unified planning and layout. Category 5 towns display complexity and 

dispersity in the morphologic characteristics. They are characterized with a relative long length, large 

area of minimum rectangle, large area in size, and large amount of low roundness and fractal dimension, 

which both express irregular shapes. The characteristics of the low roundness and fractal dimension 

express irregular shapes. The longer length of the longest and shortest axes suggests dispersed forms 

of the towns. It might generally have many natural terrain features or historically inherited street 
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layouts. Category 6 towns have a relatively regular and moderate morphology. Their length, minimum 

rectangular area, and area are moderate. The roundness and fractal dimension testify to a moderate 

regularity in their shape. The lengths of the axes are also moderate in their longest and shortest lengths. 

These towns perhaps combine a regularity of street layout with some landform features. In contrast, 

Category 7 towns exhibit an elongated and complex morphology. They rank second in length and have 

large minimum rectangular areas as well as large areas. The roundness and fractal dimension indicate 

relatively complex shapes. The longest and shortest axis lengths are relatively long, suggesting a large 

variance in the shape diversity. Such towns could well have diversified street layouts and natural 

features. Based on the above classification and analysis, it is quite clear that the morphological 

characteristics of towns have shown great differences. The variations between cities not only relate to 

the physical characteristics and the planning layout of the towns, but give important references for 

future urban planning and design. 

 

4. Conclusions  
In the present work, GAN technology was used to generate small town morphology in the Qinba 

Mountain area and analyzed it in great detail. The standardized dataset was constructed with high-

quality remote sensing images and building footprint data to guarantee diversity and accuracy. Then, 

the GAN model was employed for generating fairly true-to-life small town morphologies and 

conducting detailed quantitative analysis based on several indicators of morphology. These indicators 

were area, perimeter, fractal dimension, longest axis length, circularity, mean distance from centroid 

to corners, convex hull perimeter, and aspect ratio. These metrics provided an all-rounded description 

of the geometric and spatial characteristics of these towns from various perspectives. The results 

indicated significant differences in terms of complexity and diversity in the GAN-generated small 

town morphologies. Hierarchical clustering analysis identified and classified the intrinsic structures of 

the generated samples, indicating that different types of towns have very obvious morphological 

characteristics. For example, some categories of town morphology are compact and suitable for high-

density building layouts, while others show more complex characteristics that can be related to natural 

terrain slopes or historical street layouts. The results of this study verified the effectiveness of GAN in 

generating urban morphology and provided theoretical foundations with data support for further 

optimization of the GAN model. The morphological analysis methods and indicator systems put 

forward in this research are of significant reference value for urban planning and design. Supervised 

by rapid urbanization, enormous challenges to sustainable development, and the application of GAN 

technology in analysis and planning of urban morphology, it provides consolidating analytic and 

design efficiency while putting into one's disposal new tools and techniques for scientific wording of 

urban planning. In fact, this research has huge potential for GAN technology in the generation and 

analysis of urban morphology. It provides a scientific basis and technical support for the planning of 

small towns in the Qinba Mountain area. Future studies will focus on further optimization of the model 

parameters and extend to other regions, verifying that the methods put forward are universally effective. 
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